MATH SOLVE

4 months ago

Q:
# Which conic section is defined by the equation shown below?[tex]x^2+y^2-10x-2y+10=0[/tex]A. CircleB. ParabolaC. HyperbolaD. Ellipse

Accepted Solution

A:

Answer:circleStep-by-step explanation:Given in the question an equation,x² + y² - 10x - 2y + 10 = 0The center-radius form of the circle equation is in the format (x – h)² + (y – k)² = r²Forming the standard equation into circle equationx² + y² - 10x - 2y = -10x² - 10x + y² - 2y = -10(x² - 10x) + (y² - 2y) = -10(x² - 10x + 25) + (y² - 2y + 4) = -10+25+4(x-(-5))² + (y-(-2))² = √19²(x+5)² + (y+2)² = √19²